A DIFFERENTIAL GUIDANCE GAME FOR SYSTEMS WITH AFTEREFFECT

PMM Vol. 35, №1, 1971, pp. 123-131 Iu. S. OS IPOV (Sverdlovsk) (Received July 6, 1970)

The game problem of bringing controlled motions in a conflict situation onto a given set is considered for systems with aftereffect. The problem is investigated on the basis of the notion of extremal strategies previously introduced [1] for systems described by ordinary differential equations. The contents of the present study are related to those of [1-6].

1. Let us consider a system with aftereffect of the form

$$dx(t) \neq dt = f_1(t, x_t(s), u) + f_2(t, x_t(s), v)$$
(1.1)

Here x is an n-dimensional phase vector; the r_1 -dimensional vector u and the r_2 -dimensional vector v are the controlling forces at the disposal of the first and second players, respectively. These forces are subject to the restrictions

$$u \in P, \qquad v \in Q \tag{1.2}$$

where P and Q are compacts; the functionals $f_i(t, x(s), y)$ are defined on the products $[t_{\alpha}, t_{\beta}] \times C_{[-\tau,0]} \times Y_i$ $(Y_i = P, Y_2 = Q)$, are continuous over all the arguments and satisfy the Lipschitz conditions in the functions x(s)

$$|| f_i (t, x_1 (s), y) - f_i (t, x_2 (s), y) || \le L || x_1 (s) - x_2 (s) ||_{\tau}$$
(1.3)

Here and below $C_{[-\tau,0]}$ is the space of continuous *n*-dimensional functions x(s), $-\tau \leq s \leq 0$, $\tau = \text{const} \geq 0$, $L = \text{const} \geq 0$

$$\| z \| = (z_1^2 + ... + z_m^2)^{1/2} \text{ is the norm in the Euclidean space } E_m; \\ \| x (s) \|_{\tau} = \max_s \| x (s) \| \text{ is the norm in } C_{[-\tau,0]};$$

the segment $x_t(s) = x(t + s)$ of the trajectory of system (1.1) is called the state of the system at the instant t (and is sometimes also denoted by the symbol $x_t(\cdot)$); the interval $[t_{\alpha}, t_{\beta}]$ contains all the time intervals over which the behavior of system (1.1) is considered.

The symbols and notations which appear below without references and explanations are all defined in [6]. The guidance problem to be considered is as follows.

Some closed set M is defined in the phase space of system (1.1). We are also given the initial position of the game, namely

 $p_0 = \{t_0, x_0(s)\} \qquad (t_0 \in [t_{\alpha}, t_{\beta}), x_0(s) \in C_{[-\tau, 0]}\}$

and the instant $\vartheta \in (t_0, t_\beta]$.

We are to construct the first-player strategy U which guarantees encounter of the motions $x [t, p_0, U, V_T]$ of system (1.1) with the target M at the given instant (by the given instant) ϑ . Here the motion $x [t, p_0, U, V_T]$ is assumed to be (see [6]) an *n*-dimensional vector function of the argument t which is constructed in the following way.

We take some covering Δ of the interval $[t_{\alpha}, t_{\beta}]$ by the half-intervals $[\tau_i, \tau_{i+1})$ $(\tau_0 = t_{\alpha}, i = 0, 1, ...)$ with the covering diameter $\delta = \sup_i (\tau_{i+1} - \tau_i) > 0$. We denote by $x [t, p_0, U, V_T]_{\Delta}$ the absolutely continuous $(t \ge t_0)$ function $x [t]_{\Delta}$

which satisfies the condition $x [t_0 + s]_{\Delta} = x_0$ (s) and satisfies the contingency

$$\frac{dx[t]_{\Delta}}{dt} \Subset f_1(t, x_t[s]_{\Delta}, u[t]) + F_2(t, x_t[s]_{\Delta})$$

$$u[t] = u[\tau_i] \Subset U(\tau_i, x_{\tau_i}[s]_{\Delta}), \quad \tau_i \leqslant t < \tau_{i+1}$$

$$(1.4)$$

for almost all $t \in [t_0, t_\beta]$.

The sets U(t, x(s)) define the strategy U

$$F_2(p) = F_2(t, x(s)) = \overline{c 0} \{f_2(t, x(s), v) \mid v \in Q\}$$

and the symbol $\overline{c0}\{z\}$ denotes the closure of the convex shell of the set of vectors z.

Then, by definition, $x [t, p_0, U, V_T]$ is a continuous function which has the following property: there exists a sequence of coverings $\{\Delta_j\}$ with $\{\delta_j\} \rightarrow 0$ such that some sequence of functions $\{x [t, p_0, U, V_T]_{\Delta j}\}$ converges in $C_{[t_0, t_\beta]}$ to $x [t, p_0, U, V_T]$.

We note that by virtue of the equiboundedness and equicontinuity of the set of solutions of the equation $d_{\pi}(t)$

$$\frac{d\boldsymbol{x}\left(t\right)}{dt} \in F_{1}\left(t, \, \boldsymbol{x}_{t}\left(s\right)\right) + F_{2}\left(t, \, \boldsymbol{x}_{t}\left(s\right)\right)$$

 $(x (t_0 + s) = x_0 (s); F_1 (p) = F_1 (t, x (s)) = \overline{c0} \{f_1 (t, x (s), u) | u \in P\}; t_0 \leq t \leq t_\beta)$ the set of motions $\{x [t, p_0, U, V_T]\}$ defined in this way is nonempty).

Let us refine our statement of the problem. Let $\rho(x, M)$ be the distance in E_n from the point x to the set M.

Definition 1.1. For a given initial game position p_0 the strategy U guarantees encounter of the motions $x[t] = x[t, p_0, U, V_T]$ of system (1.1) with the target M at the instant ϑ (by the instant ϑ) if

$$\rho(\boldsymbol{x} [\vartheta], \boldsymbol{M}) = 0 \qquad (\min_{(t_0 \leqslant t \leqslant t_\beta} \rho(\boldsymbol{x} [t], \boldsymbol{M}) = 0) \qquad (1.5)$$

where x[t] is any motion $x[t, p_0, U, V_T]$.

The sufficient conditions of solvability of the guidance problem are given and the structure of the required strategy U is investigated below.

2. Let each $t \in [t_{\alpha}, t_{\beta}]$ be associated with a nonempty set $W_t = W_t \{x(s)\} \subset C_{[-\tau, 0]}$. We take a specific number $\xi \in [-\tau, 0]$ and call the set

$$W_{t\xi} = \{x \ (\xi) \mid x \ (s) \in W_t\}$$

the ξ -section of the set W_t . The sequence $\{x^{(k)}(\xi)\}$, where $x^{(k)}(s) \in C_{[-\tau,0]}$ will be called the ξ -section of the sequence $\{x^{(k)}(s)\}$.

We set

$$r(x(s), W_t) = \inf ||x(s) - y(s)||_{\tau} (y \in W_t)$$
(2.1)

Let $\{y\} = \{x^{(k)}(s)\}$ be some sequence which minimizes (2.1) for a given x(s).

Let us construct the set of partial limits of the sequence $\{x^{(k)}(0)\}\$ which is the 0-section of the sequence $\{x^{(k)}(s)\}$.

We denote by Z(x(0)) the collection of elements of this set which are closest to

x (0) in E_n .

Definition 2.1. We define strategies extremal to the system of sets W_t , $t_0 \le \le t \le \vartheta$, as those strategies U^e , V^e which are defined by the sets U^e (t, x(s)), V^e (t, x(s)), respectively, constructed according to the rule

$$U^{e}(t, x(s)) = \{u_{e} | (z - x(0))f_{1}(t, x(s), u_{e}) = \max (z - x(0))f_{1}(t, x(s), u_{e}) = \max (z - x(0))f_{1}(t, x(s), u)\} \quad (u \in P) \quad (2.2)$$

$$V^{e}(t, x(s)) = \{v_{e} | (z - x(0))f_{2}(t, x(s), v_{e}) = \max (z - x(0))f_{2}(t, x(s), v)\} \quad (r \in Q)$$

for at least one $z \subseteq Z(x(0))$.

Theorem 2.1. Let a system of strongly *u*-stable sets W_t , $t_0 \le t \le \vartheta$ (see [6]) be specified in the interval $[t_0, \vartheta]$, and let $M \supseteq W_{\vartheta_0}$. If the initial game position $p_0 = \{t_0, x_0(s)\}$ satisfies the condition $r(x_0, W_{t_0}) = 0$, then the first-player strategy U^c extremal to the system of sets W_t guarantees encounter of the motions $x[t] = x[t, p_0, U^e, V_T]$ of system (1.1) with the target M at the instant ϑ .

This theorem follows from the following lemma, which is also of independent interest. Lemma 2.1. Let the initial game position $p_0 = \{t_0, x_0(s)\}$ be such that $r(x_0(s), W_{t_0}) = 0$. If the system of sets W_t , $t_0 \leq t \leq \vartheta$ be strongly *u*-stable [6], then the strategy U^e extremal to it satisfies the condition

$$r(x_t[s], W_t) = 0, \qquad t_0 \leqslant t \leqslant \vartheta \tag{2.3}$$

where x[t] is any motion $x[t, p_0, U^e, V_T]$.

Proof. Let the system of sets W_t , $t_0 \leq t \leq \vartheta$, be strongly *u*-stable, and let $r(x_0(s), W_{t_0}) = 0$. Let x[t] be an arbitrary motion from the collection $\{x[t, p_0, U^e, V_T]\}$.

By the definition of this motion there exists a sequence of functions $\{x \ [t]_{\Delta_j}\} = \{x \ [t, p_0, U^e, V_T]_{\Delta_j}\} \ (c\{\delta_j\} \rightarrow 0),$

which converges uniformly to x[t] on $[t_0, \mathfrak{H}]$.

The validity of relation (2.3) is clearly established once we have shown that whatever the positive number ε_0 , the segment $x_t [s]_{\Delta_j}$ of any function $\tau [t]_{\Delta_j}$ with a sufficiently large number j lies in the ε_0 -neighborhood $W_t^{\varepsilon_0}$ of the set W_t for any $t \in (t_0, 0]$.

To this end we choose from the sequence $\{x [t]_{\Delta_j}\}$ in arbitrary fashion a function $x [t]_{\Delta}$ and construct along it the estimate of the quantity $\varepsilon_{\Delta}[\tau_{i+1}]$ in terms of the quantities $\varepsilon_{\Delta}[\tau_i]$ and δ . Here and below $\varepsilon_{\Delta}[t] = r (x [t]_{\Delta}, W_t)$.

Let $\overline{z}(\tau_i)_{\Delta}$ be an element of the set $Z(x_{\tau_i}[0]_{\Delta})$ which for $t = \tau_i$ defines in accordance with (2.2) the control $u_e[t]$ corresponding to the extremal strategy U^e . Without limiting generality we assume that the section $\{x_{\tau_i}^{(k)}(0)_{\Delta}\}$ of the minimizing sequence $\{x_{\tau_i}^{(k)}(s)_{\Delta}\}$ which generates the vector $z(\tau_i)_{\Delta}$ converges to $z(\tau_i)_{\Delta}$. From (2.2) we have

$$(x_{\tau_i}[0]_{\Delta} - x_{\tau_i}^{(k)}(0)_{\Delta}) N_1(\tau_i, u) \leq \beta_1(k) \qquad (u \in P)$$
(2.4)

Here

$$N_{1}(\tau_{i}, u) = f_{1}(\tau_{i}, x_{\tau_{i}}[s]_{\Delta}, u_{e}) - f_{1}(\tau_{i}, x_{\tau_{i}}[s]_{\Delta}, u), \quad \beta_{1}(k) \to 0 \quad \text{for} \quad k \to 0$$

Let us consider the position $p(k, i) = \{\tau_i, x_{\tau_i}^{(k)}(s)\Delta\}$. By virtue of the strong *u*-stability of the system of sets W_i , $t_0 \leq i \leq 0$, among the motions

$$x^{(k)} [t]_{\Delta} = x [t, p(k, i), U_{T}, V_{v_{0}}]$$

there exists a motion with the property

Differential guidance game for systems with aftereffect

$$x_{\tau_{i+1}}^{(k)}[s] \bigoplus W_{\tau_{i+1}} \tag{2.5}$$

Here the strategy V_{v_0} is generated by the function

 $v_0(t) = v_0[\tau_i] = v_0, \quad \tau_i \leq t \leq \tau_{i+1}$ which satisfies the following condition for any $v \in O$:

$$(\boldsymbol{x_{\tau_i}}[0]_{\Delta} - \boldsymbol{z}(\tau_i)_{\Delta}) \ N_2(\tau_i, v) \leq 0$$
(2.6)

$$N_{2}(\tau_{i}, v) = f_{2}(\tau_{i}, x_{\tau_{i}}|s|, v) - f_{2}(\tau_{i}, x_{\tau_{i}}|s|_{\Delta}, v_{0})$$

and therefore the following condition (for any $v \in Q$):

$$\begin{aligned} (x_{\tau_i} \mid 0 \mid_{\Delta} - x_{\tau_i}^{(k)}(0)_{\Delta}) & N_2(\tau_i, v) \leqslant \beta_2(k) \\ \beta_2(k) \to 0 \quad \text{as} \quad k \to \infty \end{aligned}$$

$$(2.7)$$

By the definition of the quantity $\varepsilon_{\Delta}[t]$ with allowance for (2.5) we have the estimate

$$\varepsilon_{\Delta}[\tau_{i+1}] \leq \|x_{\tau_{i+1}}[s]_{\Delta} - x_{\tau_{i+1}}^{(k)}[s]_{\Delta}\|_{\tau}$$
(2.8)

We note, furthermore, that the segments $x_{\tau_{i+1}}[s]_{\Delta}$, $x_{\tau_{i+1}}^{(k)}[s]_{\Delta}$ of the trajectories $x[t]_{\Delta}$. $x^{(ii)}[t]_{\Delta}$ can be expressed as follows (we assume that $\tau_{i+1} - \tau_i \ll \tau$):

$$\begin{aligned} \mathbf{x}_{\tau_{i+1}} \ [s]_{\Delta} &= \mathbf{x}_{\tau_{i}} [0]_{\Delta} + \int_{\tau_{i}}^{\tau_{i+1}+s} \{f_{1} (t, x_{i} [\cdot]_{\Delta}, u_{e}) + \varphi_{2} [t]\} dt, \quad -\alpha_{i} \leqslant s \leqslant 0 \\ & \mathbf{x}_{\tau_{i+1}} \ [s]_{\Delta} = \mathbf{x}_{\tau_{i}} \ [s + \alpha_{i}], \quad -\tau \leqslant s \leqslant -\alpha_{i} \\ & \mathbf{x}_{\tau_{i+1}}^{(k)} \ [s]_{\Delta} = \mathbf{x}_{\tau_{i}}^{(k)} \ (0)_{\Delta} + \int_{\tau_{i}}^{\tau_{i+1}+s} \{\varphi_{1}^{(k)} \ [t] + f_{2} (t, x_{i}^{(k)} [\cdot]_{\Delta}, v_{0} (t))\} dt \\ & -\alpha_{i} \leqslant s \leqslant 0 \\ & \mathbf{x}_{\tau_{i+1}}^{(k)} \ [s]_{\Delta} = \mathbf{x}_{\tau_{i}}^{(k)} \ (s + \alpha_{i}), \quad -\tau \leqslant s \leqslant \alpha_{i} \quad (\alpha_{i} = \tau_{i+1} - \tau_{i}) \end{aligned}$$

Here $\varphi_1^{(k)}[t], \varphi_2[t]$ are summable functions which satisfy the following inclusions for almost all $t \in [\tau_i, \tau_{i+1})$:

$$\varphi_{1}^{(k)}[t] \in F_{1}(t, x_{t}^{(k)}[s]_{\Delta}), \qquad \varphi_{2}[t] \in F_{2}(t, x_{t}[s]_{\Delta})$$

By virtue of the definitions of the motions $x [t, p_0, U, V_T]$, $x [t, p_0, U_T, V_v]$ and relations (2.9), we obtain from (2.8):

$$\begin{split} & \varepsilon_{\Delta} \left[\tau_{i+1} \right] \leqslant \max \left\{ \max_{\substack{-\tau \leqslant s^* := -\alpha_i}} \| \boldsymbol{x}_{\tau_i} [s]_{\Delta} - \boldsymbol{x}_{\tau_i}^{(k)} (s)_{\Delta} \| \\ & \max_{-\alpha_i \in s \subseteq 0} \| \boldsymbol{x}_{\tau_i} [0]_{\Delta} - \boldsymbol{x}_{\tau_i}^{(k)} (0)_{\Delta} + J_1 (s) + J_2 (s) \| \right\} \end{split}$$

$$(2.10)$$

Here

$$J_{1}(s) = \int_{\tau_{i}+1}^{\tau_{i}+1} \{f_{1}(t, x_{i}[\cdot]_{\Delta}, u_{e}) - \varphi_{1}^{(k)}[t]\} dt$$
$$J_{2}(s) = \int_{\tau_{i}}^{\tau_{i}+1} \{\varphi_{2}[t] - f_{2}(t, x_{l}^{(k)}[\cdot]_{\Delta}, v_{0}(t)\} dt$$

Recalling the continuity of the sets $F_i(t, x(s))$ with respect to t, x(s) and Lipschitz' condition (1.3), we find that

95

$$J_{m}(s) = (\alpha_{i} + s) (p_{m} + q_{m}) + \sum_{\tau_{i}}^{\tau_{i} + 1 + s} r_{m}^{(\kappa)}(t) dt \qquad (2.11)$$

$$p_{m} \in \overline{c0} \{N_{m}(\tau_{i}, y) \mid y \in Y_{m}\}$$

$$\|r_{m}^{(k)}\| \leq L \|x_{i}[s]_{\Delta} - x_{t}^{(k)}[s]_{\Delta} \|_{\tau} \quad (m = 1, 2)$$

where $|| q_m || \to 0$ as $\alpha_i \to 0$ uniformly in $\tau_i \in [t_0, \vartheta]$.

We shall now show that whatever the positive number β , all the functions $x [t]_{\Delta j}$ with a sufficiently large number j satisfy the inequality

$$\varepsilon_{\Delta_j}[t] \leq \beta \exp\left[3L\left(t - t_0\right)\right] \tag{2.12}$$

for all $t \in [t_0, \vartheta]$.

In fact, assuming that the opposite statement holds, we infer that there exists a number β_0 such that for any number j_0 there exists a number $j \ge j_0$ and an instant $t_*(j) \in [t_0, \vartheta]$ for which inequality (2.12) is violated for $\beta = \beta_0$. By the condition of the theorem, at the initial instant $t = t_0$ for any j we have $\varepsilon_{\Delta_j}[t_0] = 0$. Let us assume that at the points τ_k condition (2.12) for the functions $x[t]_{\Delta_j}$ is first violated for $t_*(j) = \tau_{i+1} = \tau_{i+1}(j)$,

$$\varepsilon_{\Delta_j}[\tau_{i+1}] > \beta_0 \exp\left[3L\left(\tau_{i+1} - t_0\right)\right]$$
(2.13)

Then for
$$t = \tau_i = \tau_i$$
 (1) for the same functions we have
 $\epsilon_{\Delta_i}[\tau_i] \leq \beta_0 \exp[3L(\tau_i - t_0)]$
(2.14)

Let us choose a positive number $\beta_1 \leq \beta_0$. For functions $x[t]_{\Delta_j}$ which satisfy conditions (2.13), (2.14) we have one of two cases:

Case 1. For any β_1 there exists a number $j(\beta_1)$ such that

$$\varepsilon_{\Delta_{\pm}}[\tau_i] < \beta_1 \tag{2.15}$$

for $j \ge j$ (β_1).

Case 2. There exists a number β_1 such that for any number j_0 there exists a number $j \ge j_0$ such that $\epsilon_{\Delta_1}[\tau_i] \ge \beta_1$ (2.16)

In Case 1 expression (2.11) implies the estimate

$$\varepsilon_{\Delta_j}[\tau_{i+1}] \leqslant \beta_1 + O(j), \qquad (O(j) \to 0 \text{ as } j \to \infty)$$

$$(2.17)$$

For a sufficiently small β_1 and large *i* inequality (2.17) contradicts condition (2.13).

Let us consider Case 2. If for all functions $x [t]_{\Delta_j}$ with a sufficiently large number jwe have the inequality $\|x_{\tau_j}[0]_{\Delta_j} - z(\tau_i)_{\Delta_j}\| < \alpha$ (2.18)

where α , is an arbitrarily small positive number, then, choosing a sufficiently large k, we obtain the following estimate for these functions from relation (2.10):

$$\varepsilon_{\Delta_j}[\tau_{i+1}] \leqslant \|\boldsymbol{x}_{\tau_i}[s]_{\Delta_j} - \boldsymbol{x}_{\tau_i}^{(k)}(s)_{\Delta_j}\|_{\tau}$$
(2.19)

This estimate implies the inequality

$$e_{\Delta_j}[\tau_{i+1}] \leqslant e_{\Delta_j}[\tau_i] \tag{2.20}$$

If among the functions $x [t]_{\Delta_j}$ for which Case 2 holds there are functions with arbitrarily large numbers j (at a certain positive α) such that

$$\|\boldsymbol{x}_{\tau_{i}}[\boldsymbol{0}]_{\Delta_{j}} - \boldsymbol{z}(\tau_{i})_{\Delta_{j}}\| \ge \alpha$$

$$(2.21)$$

then, substituting (2.11) into (2.10), choosing a sufficiently large k, and recalling (2.4), (2.7), we obtain the relation

$$\varepsilon_{\Delta_{j}}[\tau_{i+1}] \leqslant (1+2L\alpha_{i}) \| \boldsymbol{x}_{\tau_{i}}[\boldsymbol{s}]_{\Delta_{j}} - \boldsymbol{x}_{\tau_{i}}^{(k)}(\boldsymbol{s})_{\Delta_{j}} \|_{\tau} + o(\alpha_{i})$$
(2.22)

Here $o(\alpha_i)$ has a higher order of smallness than α_i uniformly in k and $\tau_i \in [t_0, \vartheta]$. This implies the estimate $(\tau_i + 2I\delta) = (\tau_i) + o(\delta_i)$ (2.23)

$$\varepsilon_{\Delta_{j}}[\tau_{i+1}] \leqslant (1+2L\delta_{j}) \varepsilon_{\Delta_{j}}[\tau_{i}] + o(\delta_{j})$$

$$\delta_{j}^{-1} o(\delta_{j}) \to 0 \quad \text{as} \quad j \to \infty \qquad (\text{uniformly in } \tau_{i} \in [t_{0}, \vartheta])$$

$$(2.2)$$

Relations (2.20), (2.21) clearly contradict the collection of inequalities (2.13), (2.14).

Thus, inequality (2.12) has been proved. This implies that all functions $x[t]_{\Delta_j}$ with a sufficiently large j satisfy the condition

$$\boldsymbol{\varepsilon}_{\Delta_j}[t] \leqslant \boldsymbol{\varepsilon}_0, \qquad t_0 \leqslant t \leqslant \boldsymbol{\vartheta} \tag{2.24}$$

where ε_0 is an arbitrary and arbitrarily small positive number. From (2.24) and the definition of the motion $x[t] = x(t, p_0, U, V_T]$ we infer relation (2.3).

The following statement also follows directly from the above reasoning.

Let m ma 2.2. Let a system of strongly u-stable sets W_t , $t_0 \leq t \leq \vartheta$ be specified in the interval $[t_0, \vartheta]$. The strategy U^e extremal to this system of sets has the following property: whatever the positive number ε , there exists a positive number $\alpha = \alpha$ (ε) such that the following inequality is fulfilled for all motions $x[t] = x[t, p_0, U^e, V_T]$ of system (1.1):

$$r(x_t [s], W_t) < \varepsilon, \qquad t_0 \leqslant t \leqslant \vartheta$$

provided the initial game position $p_0 = \{t_0, x_0(s)\}$ satisfies the inclusion

$$x_0$$
 (s) $\in W_{t_0}^{\alpha}$

Here W_i^{α} is the α -neighborhood in $C_{[-\tau,0]}$ of the set W_i , i.e. the collection of elements x (s) $\in C_{[-\tau,0]}$ of the form

$$x(s) = y(s) + z(s), \quad y(s) \in W_t, \quad ||z(s)||_{\tau} \leq \alpha$$

Note 2.1. The extremal second-player strategy V^e has properties analogous to those of U^e . Specifically, the following statements hold.

Lemma 2.3. Let the initial game position $p_0 = \{t_0, x_0(s)\}$ be such that $r(x_0(s), W_{t_0}) = 0$. If the system of sets W_t , $t_0 \leq t \leq \vartheta$ is strongly *v*-stable (see [6]), then the strategy V^e extremal to it satisfies the condition

$$r(x_t[s], W_t) = 0, \qquad t_0 \leqslant t \leqslant \vartheta$$

where x[t] is any motion $x[t, p_0, U_T, V^e]$ (see [6]).

Let m ma 2.4. Let the system of sets W_t , $t_0 \leq t \leq \vartheta$ be strongly *v*-stable. For any positive number ε there exists a positive number $\alpha = \alpha$ (ε) such that the following inequality holds for all motions $x[t] = x[t, p_0, U_T, V^e]$ of system (1.1):

$$r(x_t[s], W_t) < \varepsilon, \quad t_0 \leq t \leq \vartheta$$

provided the initial game position $p_0 = \{t_0, x_0(s)\}$ satisfies the inclusion $x_0(s) \in W_{t_0}^x$.

Now let us consider the problem of encounter of system (1.1) with the target M by the instant ϑ .

The following statement is valid.

Theorem 2.2. Let the initial game position $p_0 = \{t_0, x_0(s)\}$ be such that $r(x_0(s), W_{t_0}) = 0$. If the system of sets $W_t, t_0 \leq t \leq \vartheta$ is u-stable, and if $M \supset W_{\vartheta_0}$, then the strategy U^e extremal to this system guarantees encounter of the

motions $x [t, p_0, U^e, V_T]$ of system (1.1) with the target M by the instant ϑ .

Proof. As before, let x[t] be an arbitrary motion from the collection $\{x[t, p_0, U^e, V_T]\}$, and let $\{x[t]_{\Delta_j}\}$ be the sequence of functions $x[t]_{\Delta} = x[t, p_0, U^e, V_T]_{\Delta}$. To prove the statement of the theorem (see Definition 1.1) we need merely to verify that all the functions $x[t]_{\Delta_i}$ with a sufficiently large number j satisfy the inequality

$$\min_{l_0 \leqslant t \le 0} p(\boldsymbol{x}[t]_{\Delta_i}, \boldsymbol{M}) < \varepsilon$$
(2.25)

where ε is an arbitrarily small positive number.

Assuming the opposite, we find that there exists a positive number ε_c such that for any number j_0 there exists a number $j \ge j_0$ for which

$$\min_{t_{\mathbf{0}} \leq t < \mathbf{0}} \rho\left(x\left[t\right]_{\Delta_{i}}, M\right) \geqslant \varepsilon_{0}$$
(2.26)

Let us consider the subsequence of functions $x [t]_{\Delta_j}$ each of whose terms satisfies condition (2.26). We denote this subsequence by $\{x [t]_{\Delta_j}\}$ as before. We now denote the *i* th node τ_i (i = 0, 1, ...) of the decomposition of Δ_j by the symbol τ_i [*j*]. As above, let $\{x_{\tau,\{j\}}^{(k)}(s)\}$ (k = 1, 2, ...)

be a minimizing sequence for (2, 1), where

$$x(s) = x_{\tau_i[j]}[s]_{\Delta_j}$$

Here the 0-section of this sequence $\{x_{\tau_i[j]}^k(0)\}$ converges to $z(\tau_i[j])_{\Delta_j}$ (see Sect. 2 above). Let $x_{\perp}^{(k)}[l; \tau_i[j]] = x^{(k)}[l, p(k, \tau_i), U_T, V_{\tau_i}], \quad p(k, i) = \{\tau_i[j], x_{\tau_i[j]}^{(k)}(s)\}$

where the function v_0 satisfies (2.7) for $\Delta = \Delta_j$, and the motion c_0 has the property (translator's note : there is obviously an omission in the original text at this point). The following inclusion is fulfilled:

$$= x_{\tau_{i_{j-1}}[j]}^{(k)}[s, \tau_{i_{j}}[j]] \in W_{\tau_{i_{j-1}}[j]}$$
(2.27)

or the condition

$$\boldsymbol{x}^{(k)}\left[l\left(\boldsymbol{j}\right), \ \boldsymbol{\tau}_{i}\left[\boldsymbol{j}\right]\right] \in \boldsymbol{M}$$

$$(2.28)$$

holds for at least one t = t $(j) \in [\tau_i \mid j], \tau_{i+1} \mid j])$.

Such a motion exists by virtue of the inclusion

$$x_{\tau_i[j]}^{(k)}(s) \in W_{\tau_i[j]}$$

and by virtue of the definition of the *u*-stability of the system of sets W_t , $t_0 \leq t \leq v$ (see [6]).

Two cases are possible for the functions $x [t]_{\Delta_i}$ from $\{x [t]_{\Delta_i}\}$:

Case 1. Either there exists a number j_* such that for any $j \ge j_*$ and any τ_i [*j*] there exists a number k_* such that inclusion (2.27) holds for any motion $x^{(k)}$ [*t*, τ_i [*j*]] with $k \ge k_*$;

Case 2. Or for any number j^* there exists a number $j \ge j^*$ and a node $\tau_m[j]$ such that the collection $\{x^{(k)} \ [t, \tau_m[j]], k = 1, 2, ...\}$ contains motions with arbitrarily large numbers k for which condition (2.28) holds. But then choosing (if necessary) a subsequence from $\{x^{(k)}_{\tau_m[j]}(s)\}$, we can clearly assume that condition (2.28) for $x^{(k)}[t, \tau_m[j]]$

 τ_m [/]] holds for all sufficiently large k.

Let Case 1 hold. Then (see the proof of Lemma 2.1) estimate (2.12) holds for the functions $x[t]_{\Delta_j}$. Making use of this estimate and recalling the inclusion $W_{30} \subset M$ and the inequality $\phi(x[t]_{\Delta}, M) \leqslant \varepsilon_{\Delta}[t]$, we find that for sufficiently large j we have

 $\rho(x[\mathfrak{Y}]_{\Delta_i}, M) \leqslant \varepsilon_0$, which contradicts (2.26).

Now let us consider Case 2. Without limiting generality, we assume that $[\tau_m [i]]$, $\tau_{m+1} [i]$) is the first half-interval for the function $x [t]_{\Delta_j}$, where condition (2.28) holds. It can be verified directly that Case 2 implies the following estimate for the functions $x [t]_{\Delta_j}$:

$$\rho(\boldsymbol{x}[\ell(j)]_{\Delta_j}, \boldsymbol{M}) \leqslant \varepsilon_{\Delta_j}[\boldsymbol{\tau}_m[j]] + O(j)$$
(2.29)

 $O(j) \to 0 \text{ as } j \to \infty \text{ (uniformly in } \tau_i \in [t_0, \vartheta]).$

Next, arguments similar to those used in proving Lemma 2.1 can be adduced to show that every function $x [t]_{\Delta_j}$ from Case 2 which has a sufficiently large number j satisfies inequality (2.12) (where β is an arbitrarily small positive number) in $[t_0, \tau_m [j]$. But then (2.29) and (2.12) (for $t = \tau_m [j]$) imply that for sufficiently large j we have the relation $\rho(x [t]_{\Delta_j}, M) < \varepsilon_0$, which also contradicts condition (2.26). The theorem has been proved.

Note 2.2. Theorems 2.1 and 2.2 clearly remain valid if the set M = M(t) depends continuously on t. In this case the condition $W_{\vartheta_0} \subset M$ in the statements of the theorems must be replaced by the inclusion $W_{\vartheta_0} \subset M(\vartheta)$.

Note 2.3. In connection with Theorems 2.1 and 2.2 there arises the question of the existence of a system of sets W_t , $t_0 \leq t \leq \vartheta$, having the required stability properties. This matter is discussed in [6], where the sufficient conditions of strong *u*-stability of program absorption of the target M by system (1.1) are indicated. This paper also states (without proof) that the system of positional absorption sets (see [6]) has the property of *u*-stability. This is particularly important (in connection with Theorem 2, 2) in solving the game problem on the minimax (maximin) of the time to encounter of system (1.1) with the target M (see [2]).

The author is grateful to N. N. Krasovskii for his interest and valuable suggestions.

BIBLIOGRAPHY

- Krasovskii, N. N., Game problems of dynamics, I. Izv. Akad. Nauk SSSR, Tekh. Kibernetika №5, 1969.
- Krasovskii, N. N. and Subbotin, A. I., On the structure of differential games. Dokl. Akad. Nauk SSSR Vol. 190, №3, 1970.
- Pontriagin, L.S., On linear differential games, I. Dokl. Akad. Nauk SSSR Vol. 174, №6, 1967.
- 4. Mishchenko, E. F. and Pontriagin, L.S., Linear differential games. Dokl. Akad. Nauk SSSR Vol. 174, N³1, 1967.
- 5. Pshenichnyi, B. N., Linear differential games. Avtomatika i Telemekhanika №1, 1968.
- Osipov, Iu.S., Differential games of systems with aftereffect. Dokl. Akad. Nauk SSSR Vol. 196, №4, 1971.