A DIFFERENTIAL GUIDANCE GAME FOR
 SYSTEMS WITH AFTEREFFECT

PMM Vol. 35, Nㅗ, 1971, pp. 123-131
Iu.S. OSIPOV
(Sverdlovsk)
(Received July 6, 1970)

The game problem of bringing controlled motions in a conflict situation onto a given set is considered for systems with aftereffect. The problem is investigated on the basis of the notion of extremal strategies previously introduced [1] for systems described by ordinary differential equations. The contents of the present study are related to those of [1-6].

1. Let us consider a system with aftereffect of the form

$$
\begin{equation*}
d x(t) d t=f_{1}\left(t, x_{i}(s), u\right), f_{2}\left(t, x_{i}(s), v\right) \tag{1.1}
\end{equation*}
$$

Here x is an n-dimensional phase vector; the r_{1}-dimensional vector u and the $r_{2}{ }^{-}$ dimensional vector v are the controlling forces at the disposal of the first and second players, respectively. These forces are subject to the restrictions

$$
\begin{equation*}
u \in P, \quad v \in Q \tag{1.2}
\end{equation*}
$$

where P and Q are compacts; the functionals $f_{i}(t, x(s), y)$ are defined on the products $\left[t_{\alpha}, t_{\beta}\right] \times C_{[--, 0]} \times Y_{i}\left(Y_{i}=P, \quad Y_{2}=Q\right)$, are continuous over all the arguments and satisfy the Lipschitz conditions in the functions $x(s)$

$$
\begin{equation*}
\left\|f_{i}\left(t, x_{1}(s), y\right)-f_{i}\left(t, x_{2}(s), y\right)\right\| \leqslant L\left\|x_{1}(s)-x_{2}(s)\right\|= \tag{1.3}
\end{equation*}
$$

Here and below $C_{[-\tau, 0]}$ is the space of continuous n-dimensional functions $x(s)$, $-\tau \leqslant s \leqslant 0, \tau=$ const $\geqslant 0, L=$ consl $\geqslant 0$

$$
\begin{gathered}
\|z\|=\left(z_{1}{ }^{2}+\ldots+z_{m}{ }^{2}\right)^{1 / 2} \text { is the norm in the Euclidean space } E_{m} ; \\
\|x(s)\|_{\tau}=\max _{s}\|x(s)\| \text { is the norm in } C_{[-\tau .0]} ;
\end{gathered}
$$

the segment $x_{l}(s)=x(t+s)$ of the trajectory of system (1.1) is called the state of the system at the instant t (and is sometimes also denoted by the symbol $x_{t}(\cdot)$); the interval $\left[t_{\alpha}, t_{\beta}\right.$] contains all the time intervals over which the behavior of system (1.1) is considered.
The symbols and notations which appear below without references and explanations are all defined in [6]. The guidance problem to be considered is as follows.
Some closed set M is defined in the phase space of system (1.1). We are also given the initial position of the game, namely

$$
p_{0}=\left\{t_{0}, x_{0}(s)\right\} \quad\left(t_{0} \in\left[t_{\alpha}, t_{\beta}\right), \quad x_{0}(s) \in C_{[-\tau, 0]}\right)
$$

and the instant $\mathfrak{\vartheta} \in\left(t_{0}, t_{\beta}\right]$.
We are to construct the first-player strategy U which guarantees encounter of the motions $x\left\lfloor t, p_{0}, U, V_{T}\right]$ of system (1.1) with the target M at the given instant (by the given instant) v. Here the motion $x\left\lfloor t, p_{0}, U, V_{T}\right\rfloor$ is assumed to be (see [6]) an n-dimensional vector function of the argument t which is constructed in the following way.

We take some covering Δ of the interval $\left[t_{\alpha}, t_{\beta}\right.$] by the half-intervals [τ_{i}, τ_{i+1}) $\left(\tau_{0}=t_{\alpha}, i=0,1, \ldots\right)$ with the covering diameter $\delta=\sup _{i}\left(\tau_{i+1}-\tau_{i}\right)>0$.

We denote by $x\left[t, p_{0}, U, V_{T}\right]_{\Delta}$ the absolutely continuous $\left(t \geqslant t_{0}\right)$ function $x[t]_{\Delta}$ which satisfies the condition $x\left[t_{0}+s\right]_{\Delta}=x_{0}(s)$ and satisfies the contingency

$$
\begin{align*}
& \frac{d x[t]_{\Delta}}{d t} \in f_{1}\left(t, x_{i}[s]_{\Delta}, u[t]\right)+F_{2}\left(t, x_{t}[s]_{\Delta}\right) \tag{1.4}\\
& u[t]=u\left[\tau_{i}\right] \in U\left(\tau_{i}, x_{\tau_{i}}[s]_{\Delta}\right), \quad \tau_{i} \leqslant t<\tau_{i+1}
\end{align*}
$$

for almost all $t \in\left[t_{0}, t_{\beta}\right]$.
The sets $U(t, x(s))$ define the strategy U

$$
F_{2}(p)=F_{2}(t, x(s))=\overline{c 0}\left\{f_{2}(t, x(s), v) \mid v \in Q\right\}
$$

and the symbol $\overline{c 0}\{z\}$ denotes the closure of the convex shell of the set of vectors z.
Then, by definition, $x\left[t, p_{0}, U, V_{T}\right]$ is a continuous function which has the following property: there exists a sequence of coverings $\left\{\Delta_{j}\right\}$ with $\left\{\delta_{j}\right\} \rightarrow 0$ such that some sequence of functions $\left\{x\left[t, p_{0}, U, V_{T}\right]_{\Delta j}\right\}$ converges in $C_{\left[t_{0}, t_{\beta}\right]}$ to $x\left[t, p_{0}\right.$, $\left.U, V_{T}\right]$.

We note that by virtue of the equiboundedness and equicontinuity of the set of solutions of the equation

$$
\frac{d x(t)}{d t} \in F_{1}\left(t, x_{t}(s)\right) \vdash F_{2}\left(t, x_{i}(s)\right)
$$

$\left(x\left(t_{0}+s\right)=x_{0}(s) ; \quad F_{1}(p)=F_{1}(t, x(s))=\overline{c 0}\left\{f_{1}(t, x(s), u) \mid u \in P\right\} ; t_{0} \leqslant t \leqslant t_{\beta}\right)$ the set of motions $\left\{x\left[t, p_{0}, U, V_{T}\right]\right\}$ defined in this way is nonempty).

Let us refine our statement of the problem. Let $\rho(x, M)$ be the distance in E_{n} from the point x to the set M.

Definition 1.1. For a given initial game position p_{0} the strategy U guarantees encounter of the motions $x[t]=x\left[t, p_{0}, U, V_{T}\right]$ of system (1.1) with the target M at the instant ϑ (by the instant ϑ) if

$$
\begin{equation*}
\rho(x[\vartheta], M)=0 \quad\left(\min _{\left(t_{0} \leqslant t \leqslant t_{\beta}\right.} \rho(x[t], M)=0\right) \tag{1.5}
\end{equation*}
$$

where $x[t]$ is any motion $x\left[t, p_{0}, U, V_{T}\right]$.
The sufficient conditions of solvability of the guidance problem are given and the structure of the required strategy U is investigated below.
2. Let each $t \in\left[t_{\alpha}, t_{\beta}\right]$ be associated with a nonempty set $W_{t}=W_{t}\{x(s)\} \subset$ $\subset C_{[-\tau, 0]}$. We take a specific number $\xi \in[-\tau, 0]$ and call the set

$$
W_{t \xi}=\left\{x(\xi) \mid x(s) \doteq W_{t}\right\}
$$

the ξ-section of the set W_{t}. The sequence $\left\{x^{(k)}(\xi)\right\}$, where $x^{(k)}(s) \in C_{[-\tau, 0]}$ will be called the ξ-section of the sequence $\left\{x^{(k)}(s)\right\}$.

We set

$$
\begin{equation*}
r\left(x(s), W_{t}\right)=\inf \|x(s)-y(s)\|_{\tau}\left(y \in W_{t}\right) \tag{2.1}
\end{equation*}
$$

Let $\{y\}=\left\{x^{(k)}(s)\right\}$ be some sequence which minimizes (2.1) for a given $x(s)$.

Let us construct the set of partial limits of the sequence $\left\{x^{(k)}(0)\right\}$ which is the 0 -section of the sequence $\left\{x^{(k)}(s)\right\}$.

We denote by $Z(x(0))$ the collection of elements of this set which are closest to
$x(0)$ in E_{n}.
Definition 2.1. We define strategies extremal to the system of sets $W_{1}, t_{0} \leqslant$ $\leqslant t \leqslant \theta$, as those strategies U^{e}, V^{e} which are defined by the sets $U^{\prime \prime}(t, x(s))$, $V^{\prime \prime}(t, x(s))$, respectively, constructed according to the rule

$$
\begin{gather*}
U^{e}(t, x(s))=\left\{u_{e} \mid(z-x(0)) f_{1}\left(t, x(s), u_{e}\right)\right. \\
\left.\because \max (z-x(0)\} j_{1}(t, x(s), u)\right\} \quad(u=p) \tag{2.2}\\
V^{e}(t, x(s)) \cdots\left\{u_{e} \mid(z-x(0)) f_{2}\left(t, x(s), v_{e}\right)=\right. \\
\left.\because \max (z \cdots(0)) f_{2}(t, x(s), v)\right\} \quad(r \in Q)
\end{gather*}
$$

for at least one $z \cong Z(x(0))$.
Theorem 2.1. Let a system of strongly u-stable sets $W_{0}, t_{0} \leqslant t \leqslant i$ (see [6]) be specified in the interval $\left|t_{0}, v^{0}\right|$, and let $M \supset W_{s_{0}}$. If the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ satisfies the condition $r\left(x_{0}, W_{t_{0}}\right),=0$, then the first-player strategy U^{\bullet} extremal to the system of sets W_{t} guarantees encounter of the motions $x|t|$ $=\alpha:\left[t, p_{0}, U^{e}, V_{T}\right]$ of system (1.1) with the target M at the instant ϑ.

This theorem follows from the following lemma, which is also of independent interest. Lemma 2.1. Let the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ be such that $r\left(x_{0}(s), W_{t_{0}}\right)=0$. If the system of sets $W_{t}, t_{0} \leqslant t \leqslant 0$ be strongly u-stable [6], then the strategy U^{e} extremal to it satisfies the condition

$$
r\left(x,|s|, W_{t}\right) \quad \because 0, \quad t_{0} \leqslant t \leqslant t
$$

where $x|t|$ is any motion $x\left|t, p_{0}, U^{e}, V_{T}\right|$.
Proof. Let the system of sets $W_{i}, t_{0} \leqslant t \leqslant \theta$, be strongly u-stable, and let $r\left(x_{n}(s), W_{t_{0}}\right)=0$. Let $x[t]$ be an arbitrary motion from the collection $\left\{x\left[t, p_{0}, U^{e}, V_{7} V_{\}}\right.\right.$.

By the definition of this motion there exists a sequence of functions

$$
\left.\left\{x[t]_{\Delta_{j}}\right\} \quad\left\{x\left[t, p_{0}, U^{e}, V_{T}\right]_{\Delta_{j}}\right\}\left(c_{i} \delta_{j}\right\} \rightarrow 0\right\}
$$

which converges uniformly to $x|t|$ on $\left|t_{n}, \mathfrak{y}\right|$.
The validity of relation (2.3) is clearly established once we have shown that whatever the positive number ε_{0}, the segment $x_{i}[s]_{\lambda_{j}}$ of any function $x[t]_{\lambda j}$ with a sufficiently large number i lies in the ε_{0}-neighborhood $W_{t}^{\varepsilon_{0}}$ of the set W_{t} for any $t \in\left(t_{0}, \theta\right)$.

To this end we choose from the sequence $\left\{x[t]_{\Delta_{j}}\right\}$ in arbitrary fashion a function $x[t]_{\Delta}$ and construct along it the estimate of the quantity $\varepsilon_{\Delta}\left[\tau_{i+1}\right]$ in terms of the quantities $\varepsilon_{\Delta}\left[\tau_{i}\right]$ and δ. Here and below $\varepsilon_{\Delta}[t]=r\left(x[t]_{\Delta}, W_{i}\right)$.

Let $z\left(\boldsymbol{\tau}_{i}\right)_{\Delta}$ be an element of the set $Z\left(x_{\tau_{i}}[0]_{\Delta}\right)$ which for $t=\tau_{i}$ defines in accordance with (2.2) the control $u_{e}[t]$ corresponding to the extremal strategy U^{e}. Without limiting generality we assume that the section $\left\{x_{i_{i}}^{(k)}(0)_{\Delta}\right\}$ of the minimizing sequence $\{x_{\overbrace{i}}^{(9)}(s)_{\Delta}\}$ which generates the vector $z\left(\tau_{i}\right)_{\Delta}$ converges to $z\left(\tau_{i}\right)_{\Delta}$. From (2.2) we have

Here

$$
\begin{equation*}
N_{1}\left(\tau_{i}, u\right)=f_{1}\left(\tau_{i}, x_{\tau_{i}}\left[\left.s\right|_{\Delta}, u_{e}\right)-f_{1}\left(\tau_{i}, x_{-i}[s]_{\Delta}, u\right), 3_{1}(k) \rightarrow 0 \text { for } k \rightarrow\right. \tag{2.4}
\end{equation*}
$$

Let us consider the position $p(k, i)=\left\{u_{i}, x_{\tau_{i}}^{(k)}(s)_{\Delta}\right\}$. By virtue of the stroug u stability of the system of sets $W_{t}, t_{0} \leqslant t \leqslant v$, among the motions

$$
x^{(k)}[t]_{\Delta}=x\left[t, p(h, i), U_{T}, V_{v_{0}}\right]
$$

there exists a motion with the property

$$
\begin{equation*}
x_{\tau_{i+1}}^{(k)}[s] \in W_{\tau_{i+1}} \tag{2.5}
\end{equation*}
$$

Here the strategy $V_{v_{g}}$ is generated by the function

$$
v_{0}(t)=v_{0}\left[\boldsymbol{\tau}_{i}\right]=v_{0}, \quad \tau_{i} \leqslant t \leqslant \tau_{i+1}
$$

which satisfies the following condition for any $v \in Q$:

$$
\begin{gather*}
\left(x_{\tau_{i}}[0]_{\Delta}-z\left(\tau_{i}\right)_{\Delta}\right) V_{2}\left(\tau_{i}, v\right) \leqslant 0 \tag{2.6}\\
N_{2}\left(\tau_{i}, v\right)=f_{2}\left(\tau_{i}, x_{\tau_{i}}[s], v\right)-f_{2}\left(\tau_{i}, \vec{x}_{\tau_{i}}[s]_{\Delta}, v_{v}\right)
\end{gather*}
$$

and therefore the following condition (for any $v \in Q$):

$$
\begin{gather*}
\left.\left(x_{\tau_{i}} \mid 0\right]_{\Delta}-x_{\tau_{i}}^{(k)}(0)_{\Delta}\right) \gamma_{2}\left(\tau_{i}, v\right) \leqslant \beta_{2}(k) \tag{2.7}\\
\beta_{2}(k) \rightarrow 0 \quad \text { as } k \rightarrow \infty
\end{gather*}
$$

By the definition of the quantity $\varepsilon_{\Delta}[t]$ with allowance for (2.5) we have the estimate

$$
\begin{equation*}
\varepsilon_{\lambda}\left[\tau_{i+1}\right] \leqslant \| x_{\div i+1}\left[\left.s\right|_{\Delta}-x_{i+1}^{(k)}[s]_{\Delta} \|=\right. \tag{2.8}
\end{equation*}
$$

We note, furthermore, that the segments $\left.x_{-i+1}[s]_{\Delta}, x-i+1\right]_{\Delta}^{(k)}[s]_{\Delta}$ of the trajectories $x\left[\left.t\right|_{\Delta}\right.$. $x^{i j 1}[t]_{\perp}$ can be expressed as follows (we assume that $\tau_{i+1}-\tau_{i}<\tau$):

$$
\begin{align*}
& x_{\tau_{i+1}}[s]_{\Delta}=x_{\tau_{i}}[0]_{\Delta}+\int_{\tau_{i}}^{\tau_{i+1}^{+s}}\left\{f_{1}\left(l, x_{i}[\cdot]_{\perp}, u_{e}\right)+\varphi_{2}[1]\right\} d t, \quad-\alpha_{i} \leqslant s \leqslant 0 \\
& x_{\tau_{i+1}}[s]_{\Delta=} x_{\tau_{i}}\left[s+\alpha_{i}\right], \quad-\tau \leqslant s \leqslant-\alpha_{i} \tag{2.5}\\
& x_{\tau_{i=1}}^{(k)}[s]_{\Delta}=x_{\tau_{i}}^{(k)}(0)_{\Delta}+\int_{\tau_{i}}^{\tau_{i+1}^{+s}}\left\{\varphi_{1}^{(k)}[t]+j_{2}\left(t, x_{i}^{(h)}[\cdot]_{\Delta}, r_{0}(f)\right)\right\} d t \\
& -\alpha_{i} \leqslant s \leqslant 0 \\
& x_{\tau_{i+1}}^{(k)}[s]_{\Delta}=x_{\tau_{i}}^{(k)}\left(s+\alpha_{i}\right), \quad-\tau \leqslant s \leqslant \alpha_{i} \quad\left(\alpha_{i}=\tau_{i+1}-\tau_{i}\right)
\end{align*}
$$

Here $q_{1}^{(k)}[t], f_{2}[t]$ are summable functions which satisfy the following inclusions for almost all $t \in\left\{\tau_{i}, \tau_{i+1}\right)$:

$$
\mathscr{P}_{1}^{(k)}[t] \in F_{1}\left(t, x_{t}^{(k)}[s]_{\Delta}\right), \quad \mathscr{T}_{2}[t] \in F_{2}\left(t, x_{l}[s]_{\Delta}\right)
$$

By virtue of the definitions of the motions $\left.x\left[t, p_{0}, U, V_{T}\right\rfloor, x \mid t, p_{0}, U_{T}, V_{v}\right\}$ and relations (2.9), we obtain from (2.8):

$$
\begin{gather*}
\varepsilon_{\Delta}\left[\tau_{i+1}\right] \leqslant \max \left\{\max _{--\alpha^{\cdot}-\alpha_{i}}\left\|x_{\tau_{i}}[s]_{\Delta}-x_{\tau_{i}}^{(k)}(s)_{\Delta}\right\|\right. \\
\left.\left.\max _{-\alpha_{i}, s=0} \| x_{\tau_{i}}[0]_{\Delta}-x_{\tau_{i}}^{(k)}(0)\right)_{\perp} \mid J_{1}(s)+J_{2}(s) \|\right\} \tag{2.10}
\end{gather*}
$$

Here

$$
\begin{aligned}
& J_{1}(s)=\int_{\ddots_{i}}^{\boldsymbol{\tau}_{i+1}+s}\left\{f_{1}\left(t, x_{i}[\cdot]_{\Delta}, u_{e}\right)-\varphi_{1}^{(b)}[t]\right\} d t
\end{aligned}
$$

Recalling the continuity of the sets $F_{\boldsymbol{i}}(t, x(s))$ with respect to $t, x(s)$ and Lipschitz' condition (1.3), we find that

$$
\begin{gather*}
J_{m}(s)=\left(x_{\boldsymbol{i}}+s\right)\left(p_{m}+q_{m}\right)+\int_{\tau_{i}}^{i+-1} r_{m}^{(k)}(t) d t \tag{2.11}\\
p_{m} \in \overline{c 0}\left\{N_{m}\left(\tau_{i}, y\right) \mid y \in Y_{m}\right\} \\
\left\|\boldsymbol{r}_{m}^{(k)}\right\| \leqslant L\left\|x_{\boldsymbol{i}}[s]_{\Delta}-x_{i}^{(h)}[s]_{\Delta}\right\|_{\mathbf{z}} \quad(m=1,2)
\end{gather*}
$$

where $\left\|q_{m}\right\| \rightarrow 0$ as $\alpha_{i}, 0$ uniformly in $\tau_{i} \in\left[t_{0}, \vartheta\right]$.
We shall now show that whatever the positive number β, all the functions $x[t]_{\Delta j}$ with a sufficiently large number j satisfy the inequality for all $t \in\left[t_{0}, \hat{v}\right]$.

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}[t] \leqslant \beta \exp \left[3 L\left(t-t_{0}\right)\right] \tag{}
\end{equation*}
$$

In fact, assuming that the opposite statement holds, we infer that there exists a number β_{0} such that for any number j_{0} there exists a number $j \geqslant j_{0}$ and an instant $t_{*}(j) \in\left[t_{0}, v\right]$ for which inequality (2.12) is violated for $\beta=\beta_{0}$. By the condition of the theorem, at the initial instant $t=t_{0}$ for any i we have $\varepsilon_{\Delta_{j}}\left[t_{0}\right]=0$. Let us assume that at the points τ_{k} condition (2.12) for the functions $x[t]_{\Delta_{j}}$ is first violated for $t_{*}(j)=\tau_{i+1}=\tau_{i+1}(j)$,

$$
\begin{equation*}
\varepsilon_{د_{j}}\left[\tau_{i+1}\right]>\beta_{j} \exp \left[3 L\left(\tau_{i+1}-t_{0}\right)\right] \tag{2.13}
\end{equation*}
$$

Then for $t=\tau_{i}=\tau_{i}(j)$ for the same functions we have

$$
\begin{equation*}
\varepsilon_{د_{j}}\left[\tau_{i}\right] \leqslant \beta_{0} \exp \left[3 L\left(\tau_{i}-t_{0}\right)\right] \tag{2.14}
\end{equation*}
$$

Let us choose a positive number $\beta_{1} \leqslant \beta_{0}$. For functions $x[t]_{\Delta_{j}}$ which satisfy conditions (2.13), (2.14) we have one of two cases:

Case 1. For any β_{1} there exists a number $j\left(\beta_{1}\right)$ such that

$$
\begin{equation*}
\varepsilon_{\Delta j}\left[\tau_{i}\right]<\beta_{1} \tag{2.15}
\end{equation*}
$$

for $i \geqslant j\left(\beta_{1}\right)_{\text {. }}$.
Case 2. There exists a number β_{1} such that for any number j_{0} there exists a number $i \geqslant i_{0}$ such that

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}\left[\tau_{i}\right] \geqslant \beta_{1} \tag{2.16}
\end{equation*}
$$

In Case 1 expression (2.11) implies the estimate

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}\left[\tau_{i+1}\right] \leqslant \beta_{1}+O(j), \quad(O(j) \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty) \tag{2.17}
\end{equation*}
$$

For a sufficiently small β_{1} and large i inequality (2.17) contradicts condition (2.13).
Let us consider Case 2. If for all functions $x[t]_{\Delta_{j}}$ with a sufficiently large number i we have the inequality $\quad\left\|x_{\tau_{i}}[0]_{\Lambda_{j}}-z\left(\tau_{i}\right)_{\Delta_{j}}\right\|<\alpha$
where a, is an arbitrarily small positive number, then, choosing a sufficiently large k, we obtain the following estimate for these functions from relation (2.10):

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}\left[\tau_{i+1}\right] \leqslant\left\|x_{\tau_{i}}[s]_{\Delta_{j}}-x_{\tau_{i}}^{(k)}(s)_{\Delta_{j}}\right\|_{\tau} \tag{2.19}
\end{equation*}
$$

This estimate implies the inequality

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}\left|\tau_{i+1}\right| \leqslant \varepsilon_{\Delta_{j}}\left[\tau_{i}\right] \tag{2.20}
\end{equation*}
$$

If a mong the functions $x[t]_{\Sigma_{j}}$ for which Case 2 holds there are functions with arbitrarily large numbers $;$ (at a certain positive α) such that

$$
\begin{equation*}
\left\|x_{\tau_{i}}[0]_{\Lambda_{j}}-z\left(\tau_{i}\right)_{\Delta_{j}}\right\| \geqslant \alpha \tag{2.21}
\end{equation*}
$$

then, substituting (2.11) into (2.10), choosing a sufficiently large k, and recalling (2.4), (2.7), we obtain the relation

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}\left[\tau_{i+1}\right] \leqslant\left(1+2 L \alpha_{i}\right)\left\|x_{\tau_{i}}[s]_{\Delta_{j}}-x_{\tau_{i}}^{(k)}(s)_{\Delta_{j}}\right\|_{\tau}+o\left(\alpha_{i}\right) \tag{2.22}
\end{equation*}
$$

Here $o\left(\alpha_{i}\right)$ has a higher order of smallness than α_{i} uniformly in k and $\tau_{i} \in\left[t_{0}, \vartheta\right]$. This implies the estimate

$$
\begin{array}{ll}
& \varepsilon_{\Delta_{j}}\left[\tau_{i+1}\right] \leqslant\left(1+2 L \delta_{j}\right) \varepsilon_{\Delta_{j}}\left[\tau_{i}\right]+o\left(\delta_{j}\right) \tag{2.23}\\
\delta_{j}^{-1} o\left(\delta_{j}\right) \rightarrow 0 & \text { as } \left.\quad j \rightarrow \infty \quad \text { (uniformly in } \tau_{i} \in\left[t_{0}, \vartheta\right]\right)
\end{array}
$$

Relations (2.20), (2.21) clearly contradict the collection of inequalities (2.13), (2.14).
Thus, inequality (2.12) has been proved. This implies that all functions $x[t]_{\Delta_{j}}$ with a sufficiently large j satisfy the condition

$$
\begin{equation*}
\varepsilon_{\Delta_{j}}[t] \leqslant \varepsilon_{0}, \quad t_{0} \leqslant t \leqslant \vartheta \tag{2.24}
\end{equation*}
$$

where ε_{0} is an arbitrary and arbitrarily small positive number. From (2.24) and the definition of the motion $x[t]=x\left(t, p_{0}, U, V_{T}\right]$ we infer relation (2.3).

The following statement also follows directly from the above reasoning.
Lemma 2.2. Let a system of strongly u-stable sets $W_{i}, t_{0} \leqslant t \leqslant \boldsymbol{9}$ be specified in the interval $\left[t_{0}, \vartheta\right]$. The strategy U^{e} extremal to this system of sets has the following property: whatever the positive number ε, there exists a positive number $\alpha=\alpha(\varepsilon)$ such that the following inequality is fulfilled for all motions $x[t]=x\left[t, p_{0}, U^{\theta}, V_{T}\right]$ of system (1.1):

$$
r\left(x_{t}[s], W_{t}\right)<\varepsilon, \quad t_{0} \leqslant t \leqslant \vartheta
$$

provided the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ satisfies the inclusion

$$
x_{0}(s) \in W_{t_{0}}{ }^{\alpha}
$$

Here W_{t}^{μ} is the α-neighborhood in $C_{[-\tau, 0]}$ of the set W_{l}, i.e. the collection of elements $x(s) \in C_{[-\tau, 0]}$ of the form

$$
x(s)=y(s)+z(s), \quad y(s) \in W_{t}, \quad\|z(s)\|_{t} \leqslant \alpha
$$

Note 2.1. The extremal second-player strategy V^{e} has properties analogous to those of U^{e}. Specifically, the following statements hold.

Lemma 2.3. Let the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ be such that $r\left(x_{0}(s), W_{t_{0}}\right)=0$. If the system of sets $W_{t}, t_{0} \leqslant t \leqslant \vartheta$ is strongly v-stable (see [6]), then the strategy V^{e} extremal to it satisfies the condition

$$
r\left(x_{t}[s], W_{t}\right)=0, \quad t_{0} \leqslant t \leqslant \vartheta
$$

where $x[t]$ is any motion $x\left[t, p_{0}, U_{T}, V^{c}\right]$ (see [b]).
Le mma 2.4. Let the system of sets $W_{t}, t_{0} \leqslant t \leqslant \vartheta$ be strongly v-stable. For any positive number ε there exists a positive number $\alpha=\alpha(\varepsilon)$ such that the following inequality holds for all motions $x[t]=x\left[t, p_{c}, U_{T}, V^{e}\right]$ of system (1.1):

$$
r\left(x_{t}[s], W_{t}\right)<\varepsilon, \quad t_{0} \leqslant t \leqslant \vartheta
$$

provided the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ satisfies the inclusion $x_{0}(s) \in W_{t_{0}}^{x}$.

Now let us consider the problem of encounter of system (1.1) with the target M by the instant ϑ.

The following statement is valid.
Theorem 2.2. Let the initial game position $p_{0}=\left\{t_{0}, x_{0}(s)\right\}$ be such that $r\left(x_{0}(s), W_{t_{0}}\right)=0$. If the system of sets $W_{t}, t_{0} \leqslant t \leqslant \vartheta$ is u-stable, and if $M \supset W_{\theta_{0}}$, then the strategy U^{e} extremal to this system guarantees encounter of the
motions $x\left[t, p_{0}, U^{e}, V_{T}\right\rceil$ of system (1.1) with the target M by the instant iv.
proof. As before, let $x[t]$ be an arbitrary motion from the collection $\left\{x\left[t, p_{0}, E^{\prime \prime}\right.\right.$, $\left.V_{T}\right]$, and let $\left\{x[t]_{\Delta_{j}}\right\}$ be the sequence of functions $x[t]_{\Delta}=x\left[t, p_{0}, U^{e}, V_{T}\right\}_{\Delta}$. To prove the statement of the theorem (see Definition 1.1) we need merely to verify that all the functions $x\left[\left.t\right|_{A_{j}}\right.$ with a sufficiently large number j satisfy the inequality

$$
\begin{equation*}
\min _{l_{0} \leqslant t<\theta}\left(x[t]_{A_{j}}, M\right)<\varepsilon \tag{3.25}
\end{equation*}
$$

where ε is an arbitrarily small positive number.
Assuming the opposite, we find that there exists a positive number ε_{e} such that for any number j_{0} there exists a number $i \geqslant j_{0}$ for which

$$
\begin{equation*}
\min _{t_{0} \leqslant t<\theta} \rho\left(x[t]_{\Delta_{j}}, M\right) \geqslant \varepsilon_{0} \tag{2.26}
\end{equation*}
$$

Let us consider the subsequence of functions $x[t]_{\Delta_{j}}$ each of whose terms satisfies condition (2.26). We denote this subsequence by $\left\{x[t]_{\Delta_{j}}\right\}$ as before. We now denote the i th node $\tau_{i}(i=0,1, \ldots)$ of the decomposition of Δ_{j} by the symbol $\tau_{i}[j]$. As above, let

$$
\left.\left\{x_{\tau_{i}}^{(k)}(j]\right)(s)\right\} \quad(k=1,2, \ldots)
$$

be a minimizing sequence for (2.1). where

$$
x(s)=x_{i-i}[j][s]_{\Delta j}
$$

Here the 0 -section of this sequence $\left\{x_{{ }_{i}[j]}^{k}{ }^{(0)}\right\}$ converges to $z\left(\tau_{i}[i]\right)_{\Delta_{j}}$ (see Sect. 2 above). Let

$$
x^{(k)}\left[l, \tau_{i}[i]\right]=x^{(n)}\left[t, p\left(h, \tau_{i}\right), U_{T}, V_{v_{0}}\right], \quad p(k, i)=\left\{\tau_{i}[i], x_{\tau_{i}}^{(k)}(s)\right\}
$$

where the function v_{0} satisfies (2.7) for $A=A_{j}$, and the motion, (1) has the property (translator's note : there is obviously an omission in the original text at this point). The following inclusion is fulfilled:

$$
\begin{equation*}
x_{\tau_{i, 1}[1]}^{(i)}\left|s, \tau_{i}[j]\right| \in W_{-i_{i-1}[j]} \tag{2.27}
\end{equation*}
$$

or the condition

$$
\begin{equation*}
x^{(i)}\left[1(i), \tau_{i} \mid i\right] \in M \tag{2.28}
\end{equation*}
$$

holds for at least one $t \cdots i(j) \in\left[x_{i}[\eta], \tau_{i+1}[i]\right)$.
Such a motion exists by virtue of the inclusion
and by virtue of the definition of the u-stability of the system of sets $W_{t}, t_{0} \leqslant t \leqslant v$ (see [6]).

Two cases are possible for the functions $x[1]_{\Delta_{j}}$ from $\left\{x[t]_{\lambda_{j}}\right\}$:
Case 1. Either there exists a number i_{*} such that for any $i \geqslant i_{*}$ and any $\tau_{i}|i|$ there exists a number i_{*} such that inclusion (2.27) holds for any motion $x^{(i)]}\left[1, \tau_{i}\|i\|\right.$ with $k k_{*}$;

Case 2. Or for any number i^{*} there exists a number $i \not j^{*}$ and a node $\tau_{m}|j|$ such that the collection $\left\{x^{(k)}\left[t, \tau_{m}[j]\right], k=1,2, \ldots\right\}$ contains motions with arbitrapily large numbers k for which condition (2. 28) holds. But then choosing (if necessary) a subsequence from $\left\{x_{-9[j]}^{(k)}(s)\right\}$, we can clearly assume that condition (2.28) for $x^{(b)}[t$. τ_{m} [/] holds for all sufficiently large h.

Let Case 1 hold. Then (see the proof of Lemma 2.1) estimate (2.12) holds for the functions $x\left[t \|_{د_{j}}\right.$. Making use of this estimate and recalling the inclusion $H_{\theta_{0}} \mathrm{C}, \mathrm{M}$ and the inequality $\mu\left(x\left\|\|_{J}, M\right) \leqslant \varepsilon_{s}!t \mid\right.$, we find that for sufficiently large j we have
$\rho\left(x[\vartheta]_{\Delta_{j}}, M\right) \leqslant \varepsilon_{0}$, which contradicts (2.26).
Now let us consider Case 2. Without limiting generality, we assume that [τ_{m} [], τ_{m+1} (i]) is the first half-interval for the function $x[t]_{\Delta_{j}}$, where condition (2.28) holds. It can be verified directly that Case 2 implies the following estimate for the functions $x[t]_{\Delta_{j}}:$

$$
\begin{equation*}
p\left(x[t(j)]_{\Delta_{j}}, M\right) \leqslant \varepsilon_{\Delta_{j}}\left[\tau_{m}[j]\right]+O(j) \tag{2}
\end{equation*}
$$

$O(j) \rightarrow 0$ as $j \rightarrow \infty$ (uniformly in $\tau_{i} \in\left[t_{0}, \vartheta\right]$).
Next, arguments similar to those used in proving Lemma 2.1 can be adduced to show that every function $x|t|_{\Delta_{j}}$ from Case 2 which has a sufficiently large number f satisfies inequality (2.12) (where β is an arbitrarily small positive number) in $\left[t_{0}, \tau_{m}|j|\right.$. But then (2.29) and (2.12) (for $t=\tau_{m}$ (i]) imply that for sufficiently large j we have the relation $\rho\left(x[t]_{\Delta_{j}}, M\right)<\varepsilon_{n}$, which also contradicts condition (2.26). The theorem has been proved.

Note 2.2. Theorems 2.1 and 2.2 clearly remain valid if the set $M=M(t)$ depends continuously on t. In this case the condition $W_{A_{0}} \subset M$ in the statements of the theorems must be replaced by the inclusion $W_{90} \subset M(\vartheta)$.

Note 2.3. In connection with Theorems 2.1 and 2.2 there arises the question of the existence of a system of sets $W_{1}, t_{0} \leqslant t \leqslant \vartheta$, having the required stability properties. This matter is discussed in [6], where the sufficient conditions of strong u-stability of program absorption of the target M by system (1.1) are indicated. This paper also states (without proof) that the system of positional absorption sets (see [6]) has the property of u-stability. This is particularly important (in connection with Theorem 2,2) in solving the game problem on the minimax (maximin) of the time to encounter of system (1.1) with the target M (see [2]).

The author is grateful to N. N. Krasovskii for his interest and valuable suggestions.

BIBLIOGRAPHY

1. Krasovskii, N. N. , Game problems of dynamics, I. Izv. Akad. Nauk SSSR, Tekh. Kibernetika №5, 1969.
2. Krasovskii, N. N. and Subbotin, A. I., On the structure of differential games. Dokl. Akad. Nauk SSSR Vol.190, №3, 1970.
3. Pontriagin, L. S., On linear differential games, I. Dokl. Akad. Nauk SSSR Vol. 174, N86, 1967.
4. Mishchenko, E. F. and pontriagin, L. S., Linear differential games. Dokl, Akad, Nauk SSSR Vol. 174, Nis, 1967.
5. Pshenichnyi, B. N., Linear differential games. Avtomatika i Telemekhanika N1, 1968.
6. Osipov,Iu.S., Differential games of systems with aftereffect. Dokl. Akad. Nauk SSSR Vol. 196, №4, 1971.
